

Intraoperative electron radiation therapy combined to external beam radiation therapy and limb sparing surgery in extremity soft tissue sarcoma: a retrospective study of 182 cases in a single specialized center.

Díaz F, Calvo FA, González MC.

Francisco Díaz Gutiérrez MD, PhD. Department of Radiation Oncology. Hospital Clínico Universitario. Valencia. Spain

Copyright 2024 & Correspondence by Francisco Díaz Gutiérrez

Disclosures and Conflicts of Interest

- No conflicts of interest to declare
- This study is a retrospective analysis and has not received any funding

<u>Agenda</u>

- Introduction and Objectives
- Methodology
- Results
- Discussion
- Conclusions

Introduction (I)

- Incidence 1% of the population
- Mesenchymal origin
- Median age of presentation: 65 years
- Unknown etiology
 - Genetic factors
 - Environmental factors: chemical agents, immunosuppression, viruses...
- Multimodal treatment: surgery, RT and/or CHT
- IOERT, in combination with EBRT, allows obtaining a lower locorregional recurrence, preservation of the extremity and good functional outcome

Introduction II

Radiation therapy (RT)

Benefit in T < 5 cm, low grade, superficial (7th ed. TNM AJCC), and R0 ???

External radiotherapy (IMRT/3DCRT) \rightarrow non-SD in LC or survival; \neq toxicity

- Preoperative 50 Gy $\rightarrow \uparrow$ R0
- Postoperative (3-6 weeks) 50 Gy + boost 10-16 Gy (R0/R1)

➢ Boost:

- Intraoperative radiotherapy (IORT) → 10-20 Gy with LC 97% and OS 70% (Roeder)
- Intraoperative brachytherapy (IOBT) → LDR 15-25 Gy / HDR 15-20 Gy with LC 82%

Proton Therapy:

- In development (dosimetry benefit, LET ionization density for radio-resistance)
- Paediatric patients, in recurrences or locally advanced tumours, difficult locations, re-irradiation

	preoperative RT	postoperative RT
Total radiation dose1	50 Gy ²	60-68 Gy
Target volume		t
Tumor shrinkage ^{1,3}	possible	2 7 -1
Local control ⁴	† ?	1?
Wound complications	t	1
Fibrosis	1	1
Edema	1	t
Joint Stiffness	1	t
Functional outcome	Ť	1

Extracted from Radiation Therapy in Adult Soft Tissue Sarcoma – Current Knowledge and Future Directions: A Review and Expert Opinion, by Roeder F. Cancers (Basel). 2020 Nov 3;12(11):3242.

Objectives (I)

To analyze the oncological control, survival and quality of life observed in a homogeneous treatment program, which contains Intraoperative Electron Radiotherapy (IOERT) as radiotherapy intensification, in soft tissue sarcomas of the extremity, analyzing the volumetric impact of the tumor on limb preservation and sarcoma progression patterns, as well as the resulting final functionality

Objectives (II)

The systematization of the widespread use of intraoperative radiotherapy in patients with soft tissue sarcoma of the extremities allows us to study its contribution in terms of sarcoma control and its relationship with functional outcomes, in a context of comprehensive multidisciplinary and multifactorial action

Multifactorial issues:

- Prognostic known factors and efficacy of IOERT
- Multimodal treatments
- Evolutionary patterns
- Volumetry, Functionality and Safety

Scenario in maximum local intensification...

Intraoperative radiotherapy (IOERT) with electrons is a feasible local intensification treatment in patients with extremity sarcomas, which has validated its use in international recommendation guidelines

IOERT incorporation to multimodal treatment, as a component of evidencebased care innovation, allows for the enhancement of various criteria for improvement in the expected oncological outcomes:

- Maximize limb preservation
- Promote an acceptable functional outcome
- \odot Anticipate interventions through rehabilitation and clinical support actions that promote QoL

Methodology

Hospital General Universitario Gregorio Marañón. Madrid (National Reference Center in the management of Sarcoma)

- n = 182 patients
- SPB of extremities and bordering areas treated with IORT technique at HGUGM Madrid (CSUR)
- Descriptive and prevalence study
- Prospective register of clinical-therapeutic parameters
- Retrospective analysis of oncological and functional evolution data
- Follow-up from 2 to 300 months (median 60 m)
- Exclusion (incomplete records, advanced metastatic stages)
- Toronto Extremity Salvage Score (TESS): Functionality Questionnaire
- Descriptive and analytical statistics (Kaplan-Meier, Cox regression)

• Volume V =
$$\frac{\pi}{6}x \cdot y \cdot z$$
 (cm³)

RESULTS

Summary of main descriptive statistical data (I)

Age (years)		
Median	54	
Range	2–91	
Sex	n	%
Male / Female	95 / 87	52 / 48
Localization	n	%
Upper extremity	41	23
Lower extremity	141	77
Histological Subtype	n	%
Liposarcoma	45	25
MFH/UPS	25	14
Sarcoma synovial	19	10
Leiomyosarcoma	18	10
NOS / Others	75	41

Volume (cm ³)		
Median	118	
Range	0.75–2,848	
ø major (cm)		
Median	8.8	
Range	1.5 - 30	
Status	n	%
Primary	138	76
Recurrent	44	24
Ki-67 (%)	n = 115	
Median	40	
Range	0-90	

Summary of main descriptive statistical data (II)

Grading (FNCLCC)	n	%
G1	30	17
G2	64	35
G3	87	48
Stage N	n	%
0	176	97
1	6	3
Stage (8 ed.) AJCC TNM	n	%
IA	7	4
IB	24	13
II	32	18
IIIA	50	27
IIIB	58	32
IV	11	6

Multimodal Treatment	n	%
EBRT preoperative + IOERT	41	23
IOERT + EBRT postoperative	100	55
IOERT ± CHT	41	22

Surgery	n	%
Wide excision	152	84
Compartmental	22	12
Others	8	4
Surgical resection margins	n	%
R 0 (negative or > 0.5 cm)	135	74
R 1 (≥ 1 and ≤ 5 mm)	13	7
R 1 mic + (< 1 mm)	30	17
R 2 mac + (affected)	4	2

Summary of main descriptive statistical data (III)

EBRT	n		%
Preoperative	41		23
Post-operative	100		55
EBRT doses (Gy)	n		%
Median	50		
Range (cGy)	2,520-6	,040	
≤ 45 Gy	38		21
> 45 Gy	103		57
Functionality TESS	n =	= 93	% = 52
Functionality TESS 75 - 100 (very good)	n =	= 9 3	% = 52 57
Functionality TESS 75 - 100 (very good) 50 - 74 (good)	n = { 3	= 93 53 31	% = 52 57 33
Functionality TESS 75 - 100 (very good) 50 - 74 (good) < 50 (insufficient)	n = 5	= 93 5 3 3 1 9	% = 52 57 33 10
Functionality TESS 75 - 100 (very good) 50 - 74 (good) < 50 (insufficient) Follow-up (months)	n = 5	= 93 5 3 5 1 9	% = 52 57 33 10
Functionality TESS 75 - 100 (very good) 50 - 74 (good) < 50 (insufficient) Follow-up (months) Median	n = 5 3	= 93 5 3 5 1 9	% = 52 57 33 10

IOERT energy (MeV)	n	%
Median	8	
Range	4 - 18	
IOERT applicator (cm)	n	%
< 12	111	61,6
≥ 12	71	38,4
RIO doses (Gy)	n	%
7.5 - 10	68	37
12.5	107	59
15	7	4

СНТ	n	%
Yes	53	29
Νο	129	71

ONCOLOGICAL SURVIVAL AND PROGRESSION PATTERNS

		Progression Pattern Analysis (5 years) (*)								
	Local Co	ontrol - LC	trol - LC Distant Control - DC Disease Free Survival - DFS			Metas	stases	0	S	
	%	р	%	р	%	р	%	р	%	р
	68		73		57		33		76	
Surgical Margins (n =	= 135 / 13	/ 30 / 4)								
R 0 (clear or > 0,5 cm)	73		77		63		31		80	
R 1 (≥ 1 & ≤ 5 mm)	62	0.02	69	69	54	0.005	38	0.04	69	0.042
R 1 micro + (< 1 mm)	57	0.03	57	0.04	37		33		60	
R 2 macro + (affect.)	0		0		0		100		50	
Staging TNM AJCC	(n = 7 / 24	/ 32 / 50 / 3	58 / 11)							
IA	100		100		86		14		100	
IB	83		100		83		4		92	
II	78	0.000	88	0.004	69	0.004	22	0.004	88	0.004
IIIA	68	0.002	62	0.001	46	0.001	44	0.001	72	0.001
IIIB	60		69		52		38		69	
IV	18		27		50		73		36	

(*) Univariate analysis of dichotomous vs. polytomous categorical variables. Pearson Chi-square test Univariate analysis of both dichotomous categorical variables – Fisher exact test

	LC		DC	;	DFS	;	MTS	;	OS	i
	%	р	%	р	%	р	%	р	%	р
Histological Grading (n = 30 / 64 / 87); no classified: 1										
Grade 1	100		100		87		3		93	
Grade 2	80	0.001	84	0.001	70	0.001	25	0.001	83	0.001
Grade 3	48		56		25		51		63	
Mitosis Grading (n =	= 23 / 86 / 30 /	36); no o	classified: 7							
Non-mitosis	87		91		65		17		83	
Low (HFP 0-9)	79	0.004	78	0.040	65	0.005	30	0.038	83	0.023
Medium (HFP 10-19)	53	0.001	70	0.018	47	0.000	0.005 37		67	
High (HFP > 19)	39		50		33		53		64	
Ki-67 factor (n = 115)									
Index < 40%	81	0.000	85	0.004	71	0.004	19	0.004	87	0.000
Index ≥ 40%	46	0.009	54	0.001	38	0.001	48	0.001	62	0.003
Stage Primary vs. R	ecurrent(n =	138 / 44								
Primary	78	0.004	78	0.000	65	0.004	30	0.007	80	0.000
Recurrent	30	0.001	59	0.028	32	0.001	45	0.027	61	0.008

Progression and Survival Resume (%)

Follow-up (years)	OS	DFS	MFS	LC	DC	OS Primary	OS Recurrent
5	76	57	67	68	73	78	57
10	72	54	64	62	68	72	49

	Alive	Deceased	p < 0.05	
Ki 67 (media)	37.53	50.86	0.007	
Number of cases	73	35	p = 0.007	
Tumor Volume (media)	241.92	430.19		
Number of cases	114	54	p = 0.045	

IA	IB	II	IIIA	IIIB	IV	
Staging TNM AJCC vs. ALIVE						
100%	95%	74%	64%	60%	36%	

CSS & Ki-67 factor

Volumetry & Survival: potential as a staging variable

Tumor Volumetry and CSS

Volume	n	CSS - 5 years	CSS – 10 years	р
< 120 cc	87	80%	79%	
120-350 cc	37	70%	65%	0.01
> 350 cc	44	66%	59%	•

Volume	n	CSS – 5 years	HR
< 120 cc	87	80%	1
120-350	37	69%	1.90
> 350	44	63%	2.14

CSS - Cancer-Specific Survival (Primary vs. Recurrent)

Hazard Ratio (HR) : 0.445

Primary tumours have a 55% lower risk of sarcoma death (95% CI: 23%-75%) compared to recurrent tumours

Patterns of Survival and Progression vs. Histological Grading

Survival Patterns vs. Surgical Margins

Survival Patterns vs. Surgical Margins

OS vs. Surgical Margins R0 / R1; p = 0.02

Survival, Progression patterns vs. EBRT pre/postoperative										
LC (%) DC (%) OS (%) DFS (%)						MFS	6 (%)			
Follow-up (years)	5	10	5	10	5	10	5	10	5	10
EBRT Pre + IOERT	66	59	68	61	80	76	56	54	61	59
IOERT	51	46	66	63	56	54	44	42	63	61
IOERT + Post EBRT	75	69	78	73	78	70	62	59	70	68
р	0.002		0.0	04	0.0)53	0.0)38	0.0	32

CSS vs. EBRT PRE / POSTOPERATIVE (Volume 250 cc)

CSS vs. Vessels and Necrosis

Functiona		
TESS	n	(%)
TESS test	93	51
Functionality 0 to < 50	9	10
Functionality \geq 50 to < 75	31	33
Functionality $\rightarrow \geq 75-100$	53	57
Non-TESS (deceased)	68	37
Amputation	14	8
Non-located	6	3

FU

FUNCTIONALITY 75 vs. Volume 120 cc							
			Volum	- / 1			
р	= 0.002		< 120 cc	> 120 cc	Iotal		
	< 75	n	16	24	40		
		%	40.0	60.0	100.0		
NCTIONALITY		n	38	15	53		
	≥ 75	%	71.7	28.3	100.0		
- / .		n	54	39	93		
Total		%	58.1	41.9	100.0		

FUNCIONALITY 75 vs. Volume 250 cc						
	- 0.045		Volum	Total		
p	p = 0.045 < 250 cc		< 250 cc			> 250 cc
	. 75	n	25	15	40	
	< /5	%	40.0	60.0	100.0	
UNCTIONALITY		n	43	10	53	
	≥ /5	%	81.1	18.9	100.0	
		n	68	25	93	
Iotal		%	Volume 250 CC Volume 250 < 250 cc	100.0		

Faculty of Medicine. Universidad Complutense de Madrid

DISCUSSION

- Strategic factors for Multimodal Treatment
- Multimodal Treatment
 - Objectives
 - Volumetry Factor
 - Functionality

Strategic factors for Multimodal Treatment I

- Survival and LC: IOERT + EBRT (pre- or post-operative) >>>> exclusive IOERT
- IOERT dosage:
 - Recommendations ESTRO 2020 (Roeder, Calvo, Ferrer) doses 12-12.5 Gy
 - In our series: chronic PN (15.4%) with doses > 12.5 Gy
- IOERT + EBRT Post-operative: significant OS/CSS improvement for tumor volume < 250 cc
- EBRT Preoperative + IOERT non-significant OS/CSS improvement for tumor volume > 250 cc (future studies)
- EBRT: Neoadjuvant (high volume tumors) and Adjuvant (low volume tumors)
- Innovative treatment strategies (CHT + EBRT) in high-risk patients

Strategic factors for Multimodal Treatment II

- > Cellular heterogeneity in SPB, BIOLOGY affected by volume and surgery
- \succ "Discriminatory" volume factor (250 cc) \rightarrow impact OS / CSS
- Survival and progression patterns (statistical finding):
 - LC / DC / DFS / OS vs. Histological Grading
 - DFS / OS vs. Surgical Margins
 - LC / DC / OS / CSS vs. TNM AJCC staging I II > 90%
- Increased risk of recurrence:
 - High histological grade (G3) \rightarrow \uparrow metastases and death (66%) vs. G1/G2 (31%)
 - Medium/High Mitotic Index (60% 69.4%)
 - TNM (stage IIIA, IIIB or IV) (54% 81.8%)
- Affected or proximate surgical margins (< 5 mm)</p>
- Treatment of recurrence (CHT, EBRT, IOERT, Surgery)
- Functionality (TESS)

Multimodal Treatment: considerations (I)

Our study consolidates: Surgery + IOERT (12.5 Gy) + EBRT post-operative (45 – 50 Gy) is a safe and efficient multimodal treatment with high CSS and functionality

- Grading FNCLCC G1 / G2
- R0 surgical margins (free or > 5 mm)
- Tumor volume < 250 cc</p>
- Ki-67 < 40%
- Primary
- In other scenarios: G3; Volume > 250 cc; Ki-67 > 40%; ab initio recurrent (other therapeutic sequences and intensities should be assessed -> EBRT preoperative, altered fractionations, chemo-irradiation or induction CHT
- IOERT intensification to compensate for adversity due to the condition of the surgical margins
- Future incorporation into studies: Volumetry, functionality measure, Ki-67 factor

Multimodal Treatment: considerations (II)

- Retrospective study with a long period of time in the prospective registration of care action and bio-heterogeneity of the cancer evaluated, influences the methodological quality and interpretation of results.
- Multimodal treatment always associated with IOERT has favourable results in oncological evolutionary patterns.
- Favourable prognostic profiles: volume < 120 cc, G1, free surgical margins, primary presentation, and Ki-67 ≤ 40%
- Unfavourable differential prognostic variables: margins < 5 mm, G3, staging IIIA-IIIB-IV, grade of mitosis, tumor volume > 120 cc, recurrent tumor and number of recurrences, Ki-67 > 40%, limb root SPB, and development of metastases.
- In volumes up to 250 cc, Radiotherapy must introduce relevant changes in clinical practice with radio-biological innovation: IOERT dose escalation (field-within-the-field), preoperative proton therapy, metabolism-guided dose escalation, altered fractionations, grid dosimetry.
- Limb preservation: achieve limb-sparing surgery and reserve amputation for recurrent or difficult-to-resect cases, or extracompartmental bulky lesions.

CONCLUSIONS

Conclusions (I)

- Intraoperative electron radiotherapy, as an innovative and systematized component of local radiotherapy intensification in patients with soft tissue sarcomas of the extremities, contributes significantly to generating patients with anatomical and functional preservation, minimally toxic local control and majority disability-free survival, in the context of multimodal treatment, in the mature experience of an expert institution of reference in the treatment of soft tissue sarcomas.
- 2. The original oncological analysis factors in this study cohort and their impact in relation to prognostic adversity in sarcoma control and patient evolution are volumetry (> 250 cc) and Ki-67 expression (> 40%). Radiotherapy intensity can compensate for the risk of local prognostic adversity up to a volume < 300 cc and a Ki-67 expression factor < 40%. Exceeding these cut-off values does not guarantee oncological control with dose escalation.</p>
- 3. Volumetry emerges as a mathematized, recordable risk identification parameter that should be incorporated into clinical staging elements. In lesions with adverse volumetry, it is an alert to guide personalized treatment proposals with local and systemic intensification criteria.

Conclusions (II)

- 4. The study of the functionality of the limb, using validated methodology and voluntary collaboration by the surviving patients of a homogeneously treated cohort (in terms of intensified radiotherapy intensity and surgical expertise of a reference centre). identifies a mostly favourable evolution that is negatively compromised by the dimensionality of the original lesion, due to resections with greater loss of tissues (including muscle structures) and more extensive and irregular radiotherapy volume.
- 5. The results obtained allow us to have multifactorial oncological and functional predictive information, incorporating **new parameters with objective metrics to improve clinical practice and personalize the treatment of patients with soft tissue sarcomas of the extremities and related areas**, with criteria of intensification in presentations with identifiable oncological prognostic adversity and anticipate rehabilitation care in situations of high risk of dysfunction evolutionary.

