IORT for Brain Metastases

Impact on Time to Systemic Treatment Onset and Other Patient-Relevant Outcomes

Cas S. Dejonckheere MD

Department of Radiation Oncology University Hospital Bonn, Germany

12th ISIORT Conference November 8th, 2024 in Brussels, Belgium

Conflict of Interest

none

Context


- relative diagnostic <u>incidence</u> of brain metastases (BMs) ↑
- large/symptomatic BMs: maximal <u>surgical resection</u> + <u>adjuvant</u> stereotactic radiotherapy (SRT) to ↑ local control
- → prevent neurological decline
- → avoid additional interventions
- → overall BM treatment time ↑
- → delayed onset of (systemic) treatment (survival ↓ ?)

IORT

- high rates of local tumor control
- prevent early repopulation of residual microscopic tumor
- steep dose gradient, sparing of organs at risk (OARs)
- solitary BM: omission of SRT
- multiple BMs: 1 fewer target volume
 - → reduced total number of treatment days

Grimmer et al. Adv Radiat Oncol 2024

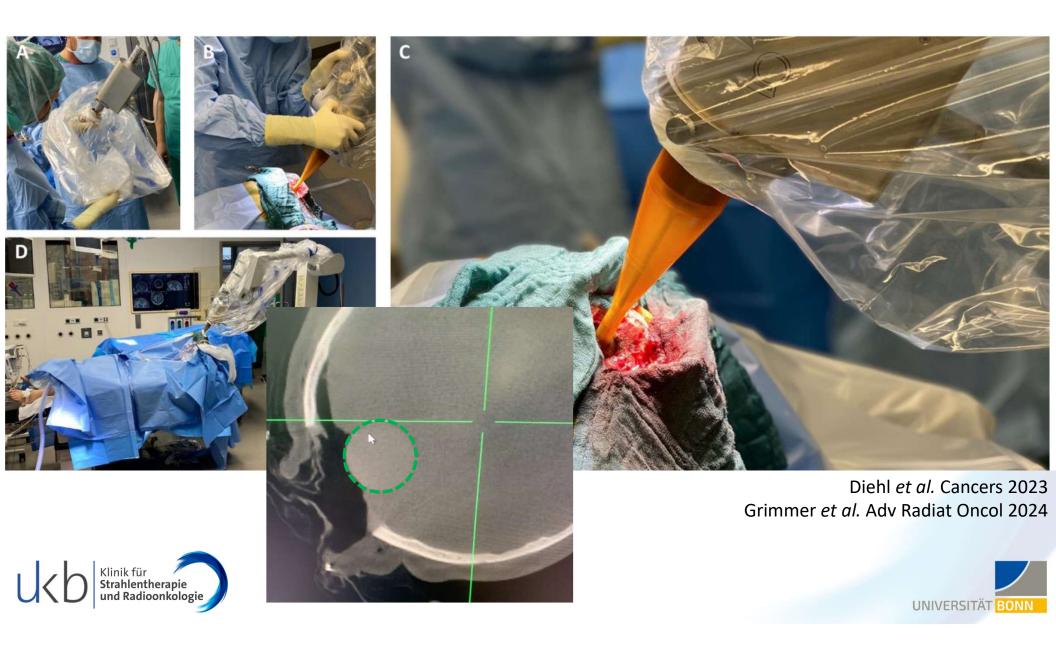
Objective

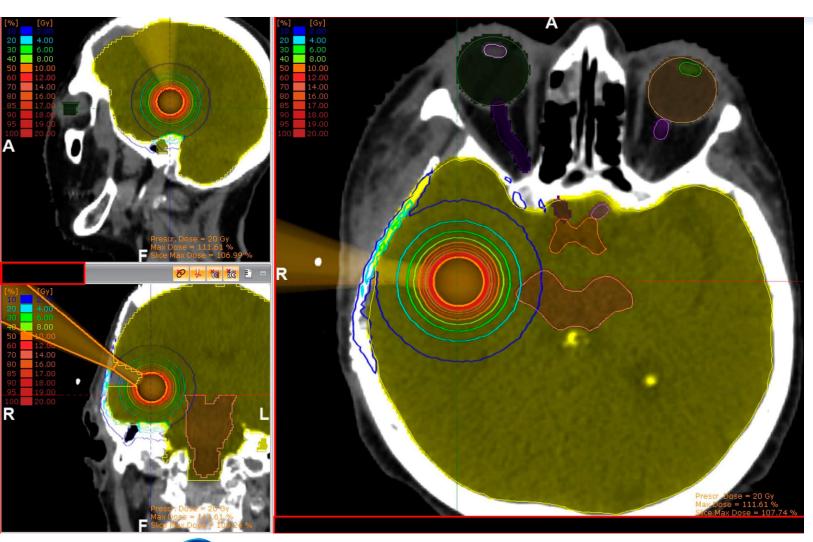
- data on local control, distant brain control, overall survival, radiation necrosis etc. are maturing
- here: meaningful <u>secondary</u> endpoints
 - <u>time to next treatment</u> (TTNT) = number of days between BM resection and start of the next <u>extracranial</u> oncological intervention (systemic treatment, extracranial surgery, or radiotherapy)
 - duration of postoperative <u>corticosteroid</u> treatment
 - <u>in-hospital times</u> (both as in- and out-patient)

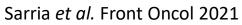
→ compared to SRT

Methods

- University Hospital Bonn, Germany
- November 2020 till June 2023
 - prospective BM-IORT registry
 - all patients receiving SRT within the same timeframe (institutional database)

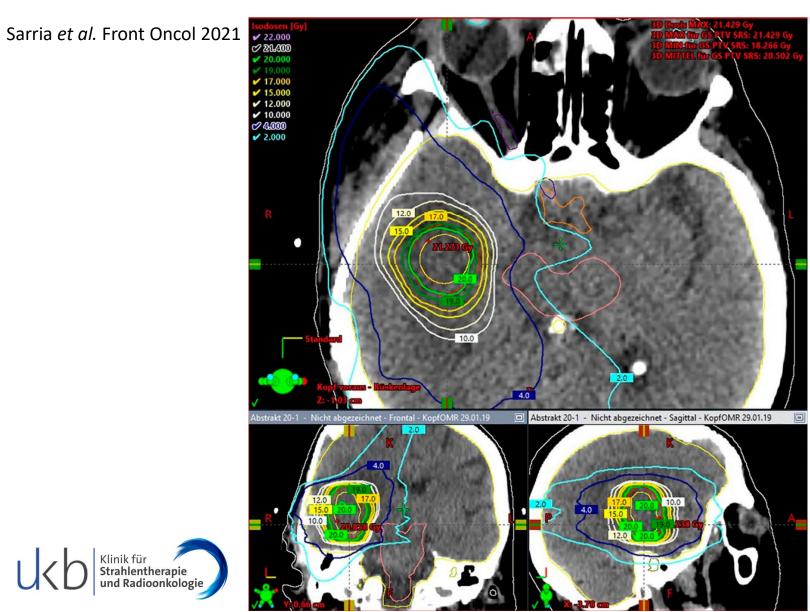

Methods -- IORT arm


- spherical applicator 1.5–5 cm
- 50 kV photons
- 16–30 Gy with INTRABEAM 600 (Carl Zeiss Meditec, Germany)
- OAR distance/dose measured intraoperatively (neuronavigation)
 - optic chiasm < 12 Gy
 - brainstem < 12.5 Gy



Methods -- SRT arm

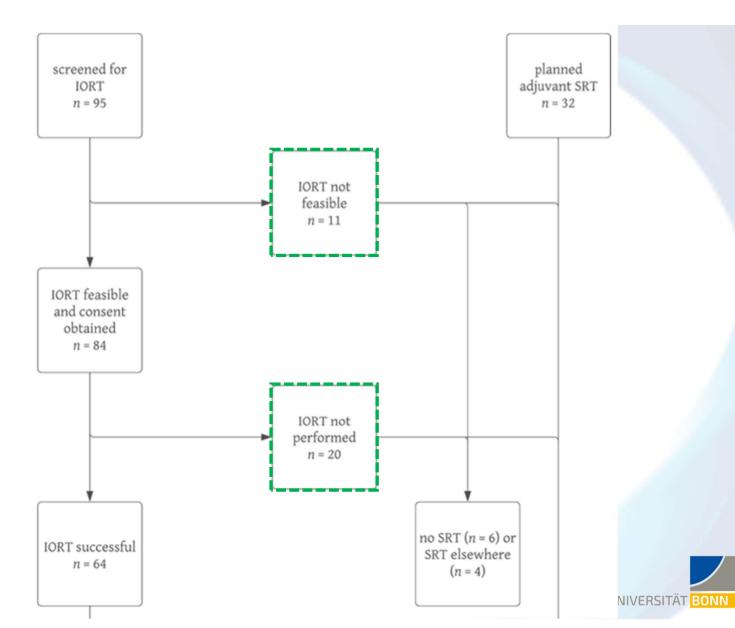
- initially screened for IORT but not carried out <u>or</u> upfront planned SRT
- 1–10 BMs at time of surgery, solid tumor histology
- SRS or fSRT, after interval


Patients who underwent RT >22 days after surgical resection had a decreased risk for all-cause mortality of 47.2% (95% CI: 8.60, 69.5%). Additionally, waiting >40 days for RT after surgical resection more than doubled the risk of tumor progression; adjusted hazard ratio 2.02 (95% CI: 1.12, 3.64).

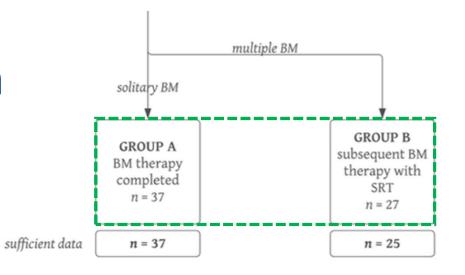
Yaghi et al. Neuro Oncol Pract 2022

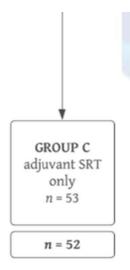
- thermoplastic mask + simulation CT + planning MRI
- IMRT (TrueBeam STx, Varian Medical Systems, USA) and IGRT (ExacTrac, Brainlab, Germany)

screened for IORT n = 95


Table 1 Reasons for not receiving IORT for resectable brain metastasis. IORT = intraoperative radiotherapy; OAR = organ at risk

```
IORT not possible or feasible (n=11) logistics (n=6) expected violation of OAR constraint (n=3) patient declining surgery (n=2)
IORT possible and feasible, but not performed (n=20) frozen section unclear (n=7) resection cavity not spherical (n=5) technical reasons (n=4) logistics (n=2) measured violation of OAR constraint (n=1) patient declining surgery (n=1)
```


Selection

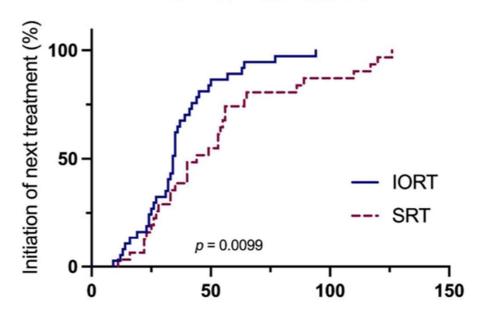
Selection

	IORT	SRT	p
n	62	52	
female sex, n (%)	31 (50)	25 (48)	0.85
median age at surgery (range) in years	63 (35 – 91)	64 (34 – 87)	0.86
KPS at surgery, n (%)	49 (79)	43 (83)	0.77
≥70	13 (21)	9 (17)	0.77
median DS-GPA at surgery (range)	2(0-4)	2(0-4)	0.39
extracranial metastases at surgery, n (%)	52 (84)	27 (68)	0.09
median radiation dose (range) in Gy *	30 (16 – 30)	35 (20 – 45)	
primary lobe, n (%)	50 (10 50)	55 (25 .5)	
frontal	24 (39)	17 (33)	0.07
parietal	2(3)	10 (19)	0.07
occipital	16 (26)	8 (15)	
temporal	8 (13)	8 (15)	
cerebellum	12 (19)	9 (17)	
primary tumour, n (%)			
lung	37 (60)	25 (48)	0.26
melanoma	10 (16)	9 (17)	
GI	5 (8)	7 (13)	
GU	6 (10)	3 (6)	
breast	3 (5)	3 (6)	
gynaecological	1 (2)	1 (2)	
other	0 (0)	4 (8)	
number of BMs at surgery, n (%)			
solitary	36 (58)	31 (60)	0.49
multiple	26 (42)	21 (40)	
(range of multiple BMs)	(2-10)	(2-10)	
median time (range) to			
SRT onset in days		25 (11 – 173)	
SRT completion in days		34 (11 – 187)	

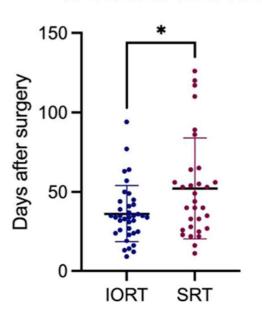
Patients who underwent RT >22 days after surgical resection had a decreased risk for all-cause mortality of 47.2% (95% CI: 8.60, 69.5%). Additionally, waiting >40 days for RT after surgical resection more than doubled the risk of tumor progression; adjusted hazard ratio 2.02 (95% CI: 1.12, 3.64).

Yaghi et al. Neuro Oncol Pract 2022

Table 3 Time to next treatment, duration of postoperative corticosteroid treatment, and in-hospital time. IORT=intraoperative radiotherapy; SRT=stereotactic radiotherapy; SD=standard deviation


	IORT	SRT	p
received postoperative extracranial treatment, n (%)			
yes	39 (63) *	31 (60)	0.99
no	18 (29) **	15 (29)	
unknown	5 (8)	6 (11)	
type of additional treatment, n (%)			
chemotherapy	6 (16)	12 (39)	0.11
immunotherapy	20 (54)	12 (39)	
chemoimmunotherapy	4 (11)	6 (19)	
antihormone therapy	1 (3)	0 (0)	
extracranial surgery	3 (8)	1 (3)	
extracranial radiotherapy	3 (8)	0 (0)	
location of postoperative extracranial treatment, n (%)			
same center	21 (54)	23 (74)	0.08
different center	18 (46)	8 (26)	
time to next treatment			
median (range) in days	34(9-94)	44(11-126)	0.01
mean ± SD in days	36 ± 18	52 ± 32	
postoperative corticosteroid treatment			
median (range) in days	7(0-30)	7(0-14)	0.83
$mean \pm SD$ in days	8±5	8 ± 3	
postoperative in-hospital time (in-patient)			
median (range) in days	8(2-29)	8(2-42)	0.97
$mean \pm SD$ in days	11±6	12±8	
total in-hospital time (in- and out-patient)			
median (range) in days	8(2-29)	15(7-48)	< 0.001
$mean \pm SD$ in days	11 ± 6	19±9	
20 30 00 1 10 10 1 10 10 10 10 10 10 10 10 1		STO DATE AND COLUMNS SOUR	

^{*} Extracranial surgery had to be postponed in one patient suffering COVID pneumonia and another patient initially declined immunotherapy. Both patients were excluded from the analysis

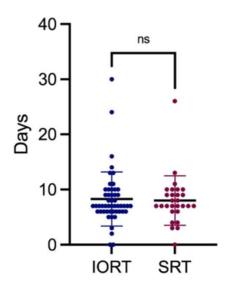


^{**} Two patients had already started systemic therapy prior to surgery and were also excluded from the analysis

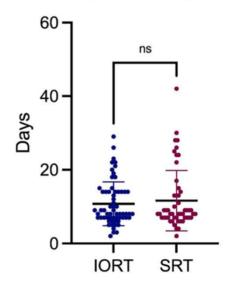
Time to next treatment

Time to next treatment

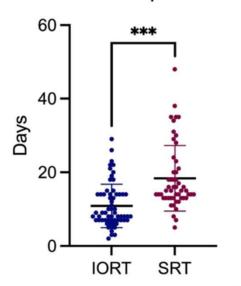
Table 3 Time to next treatment, duration of postoperative corticosteroid treatment, and in-hospital time. IORT=intraoperative radiotherapy; SRT=stereotactic radiotherapy; SD=standard deviation


	IORT	SRT	p
received postoperative extracranial treatment, n (%)			
yes	39 (63) *	31 (60)	0.99
no	18 (29) **	15 (29)	
unknown	5 (8)	6 (11)	
type of additional treatment, n (%)			
chemotherapy	6 (16)	12 (39)	0.11
immunotherapy	20 (54)	12 (39)	
chemoimmunotherapy	4 (11)	6 (19)	
antihormone therapy	1 (3)	0 (0)	
extracranial surgery	3 (8)	1 (3)	
extracranial radiotherapy	3 (8)	0 (0)	
location of postoperative extracranial treatment, n (%)			
same center	21 (54)	23 (74)	0.08
different center	18 (46)	8 (26)	
time to next treatment			
median (range) in days	34(9-94)	44(11-126)	0.01
$mean \pm SD$ in days	36 ± 18	52 ± 32	
postoperative corticosteroid treatment			
median (range) in days	7(0-30)	7(0-14)	0.83
$mean \pm SD$ in days	8±5	8±3	
postoperative in-hospital time (in-patient)			
median (range) in days	8(2-29)	8(2-42)	0.97
mean ± SD in days	11±6	12±8	
total in-hospital time (in- and out-patient)		(), ()	
median (range) in days	8 (2-29)	15(7-48)	< 0.001
mean ± SD in days	11±6	19±9	

^{*} Extracranial surgery had to be postponed in one patient suffering COVID pneumonia and another patient initially declined immunotherapy. Both patients were excluded from the analysis



^{**} Two patients had already started systemic therapy prior to surgery and were also excluded from the analysis


Time to corticoid discontinuation

Post surgery in-hospital times

Total in-hospital times

What does the literature say?

author	type		IORT outcome of published trials			,	n	TTNT (days)	
(year)	сурс	1y	yLCR (%)	1yDBC (%)	RN (%)	1yOS (%)	IORT	SRT	Tivi (days)
Kahl et al. (2024)	retrospective	DE	84	48	3	58	117	/	mean (range) 31 (1–136)
Current (2023) [<i>n</i> = 35]	prospective study registry	DE	97	74	3	58	62	52	mean (range) I ORT: 36 (9–94) SRT: 52 (11–126)
Brehmer et al. (2023)	prospective phase II (preliminary)	DE			20		35	1	mean (95% CI) 45 (35–55)
Guedes de Castro et al. (2023)	prospective phase II		88	13	10	80	10	/	n.r.
Diehl et al. (2022)	retrospective	DE	93	71	11	58	18	/	in 5 IORT patients ≤ 15 (shorter than wound healing and adjuvant SRT would have required)
Cifarelli et al. (2019)	retrospective		88	58	7	73	54	/	n.r.
Brehmer et al. (2018)	prospective phase II (preliminary)	DE					10	19	mean (range) I ORT: 46 (27–83) SRT: 61 (16–229)
Weil et al. (2015)	prospective		n.r.	n.r.	13	n.r.	23	/	n.r.

Discussion

- <u>reasons</u> for longer TTNT in SRT?
 - incomplete staging, postponed until after SRT (e.g. conflicting appointments)
 - side effects
 - undesirable combination with planned systemic therapy (e.g. BRAF/MEKi)
 - patient refusal to undergo parallel treatments

Conclusion

- rapid completion of interdisciplinary BM treatment is important
- IORT for resectable BMs can achieve this
 - feasibility rate 88%
 - (comparable safety profile) Hamed et al. Cancers 2022
 - (comparable LC and RN rate) Layer et al. J Neurooncol 2023
 - no prolonged corticosteroid intake
 - important in the current ICI/TT era Layer et al. Int J Radiat Oncol Biol Phys 2024

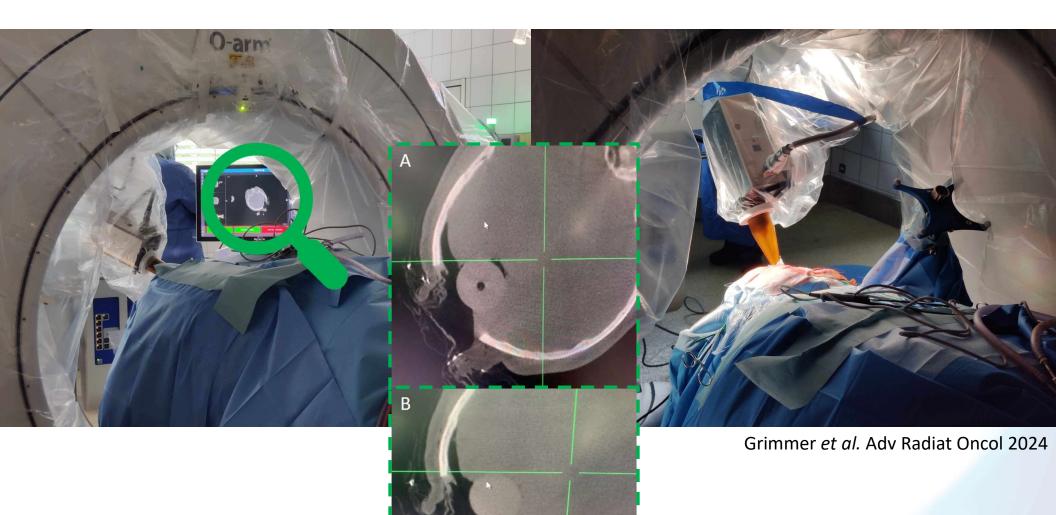
16 days © 8 days

earlier start of extracranial oncological therapy (on average)

shorter total in-hospital time (on average)

Future

- impact on ...
 - resources/cost?
 - quality of life?
 - oncological outcome i.e. survival?
- → randomized controlled trial needed (and planned)



Future

- reproduction of dose distribution/OAR constraints (e.g. future cranial target volumes) = advantage of SRT
 - → IG-IORT and real-time/post-hoc planning Grimmer et al. Adv Radiat Oncol 2024

RESEARCH

Intraoperative or postoperative stereotactic radiotherapy for brain metastases: time to systemic treatment onset and other patient-relevant outcomes

Cas S. Dejonckheere¹ · Julian P. Layer^{1,2} · Motaz Hamed³ · Katharina Layer¹ · Andrea Glasmacher¹ · Lea L. Friker^{2,4} · Anna-Laura Potthoff³ · Thomas Zeyen⁵ · Davide Scafa¹ · David Koch¹ · Stephan Garbe¹ · Jasmin A. Holz¹ · Fabian Kugel¹ · Molina Grimmer¹ · Frederic Carsten Schmeel⁶ · Gerrit H. Gielen⁴ · Helmut Forstbauer⁷ · Hartmut Vatter³ · Ulrich Herrlinger⁵ · Frank A. Giordano⁸ · Matthias Schneider³ · Leonard Christopher Schmeel¹ · Gustavo R. Sarria¹

Received: 4 August 2023 / Accepted: 23 September 2023

Cas.Dejonckheere@ukbonn.de

